Cloning and Sequencing of a Novel meta -Cleavage Dioxygenase Gene Whose Product Is Involved in Degradation of γ-Hexachlorocyclohexane in Sphingomonas paucimobilis

Abstract
Sphingomonas (formerly Pseudomonas)paucimobilis UT26 utilizes γ-hexachlorocyclohexane (γ-HCH), a halogenated organic insecticide, as a sole source of carbon and energy. In a previous study, we showed that γ-HCH is degraded to chlorohydroquinone (CHQ) and then to hydroquinone (HQ), although the rate of reaction from CHQ to HQ was slow (K. Miyauchi, S. K. Suh, Y. Nagata, and M. Takagi, J. Bacteriol. 180:1354–1359, 1998). In this study, we cloned and characterized a gene, designated linE, which is located upstream oflinD and is directly involved in the degradation of CHQ. The LinE protein consists of 321 amino acids, and all of the amino acids which are reported to be essential for the activity ofmeta-cleavage dioxygenases are conserved in LinE.Escherichia coli overproducing LinE could convert both CHQ and HQ, producing γ-hydroxymuconic semialdehyde and maleylacetate, respectively, with consumption of O2 but could not convert catechol, which is one of the major substrates formeta-cleavage dioxygenases. LinE seems to be resistant to the acylchloride, which is the ring cleavage product of CHQ and which seems to react with water to be converted to maleylacetate. These results indicated that LinE is a novel type ofmeta-cleavage dioxygenase, designated (chloro)hydroquinone 1,2-dioxygenase, which cleaves aromatic rings with two hydroxyl groups at para positions preferably. This study represents a direct demonstration of a new type of ring cleavage pathway for aromatic compounds, the hydroquinone pathway.

This publication has 46 references indexed in Scilit: