Abstract
Gluconeogenesis is a liver-specific pathway which permits the synthesis of phosphorylated sugars from oxaloacetate, pyruvate, amino acids, or trioses. The absolute requirement for glucose or an alternative hexose which characterizes most mammalian cells probably reflects an inability to perform gluconeogenesis rather than to generate sufficient energy by respiration alone. Cells of diverse histogenetic origins have been tested in glucose-free medium, supplemented with oxaloacetate or with dihydroxyacetone. The only cells able to grow are well-differentiated hepatoma cells which produce the relevant gluconeogenic enzymes: phosphoenolpyruvate carboxykinase, fructose diphosphatase, and triokinase. Reconstruction experiments demonstrate that glucose-free media permit the selective growth of cells producing gluconeogenic enzymes. These media should be useful for analysis of reexpression of differentiated functions in somatic cell hybrids and for the isolation of mutants.