Does steric interference between splice sites block the splicing of a short c-src neuron-specific exon in non-neuronal cells?
Open Access
- 1 March 1991
- journal article
- Published by Cold Spring Harbor Laboratory in Genes & Development
- Vol. 5 (3) , 389-402
- https://doi.org/10.1101/gad.5.3.389
Abstract
The neuron-specific splicing of the mouse c-src N1 exon was analyzed. Model src genes, transiently expressed in HeLa and LA-N-5 neuroblastoma cells, were assayed for the insertion of the 18-nucleotide neuron-specific N1 exon into their product mRNA. The normal clone fails to use this exon in HeLa cells but inserts the exon into 50% of the mature mRNA in LA-N-5 cells. When the exon and flanking intron sequences are placed between two adenovirus exons, the N1 exon is still only inserted in the neural cells. Thus, the neural specificity is a property of the exon itself and its immediate flanking sequences. Simply extending the length of the N1 exon to 109 nucleotides allows its efficient use in HeLa cells, implying that the exon is normally skipped because it is too short to allow spliceosomes to assemble at both ends simultaneously. This model predicts that exclusion of the exon should be sensitive to proteins or mutations that alter the relative strength of the flanking splice sites. Mutations that change these splice sites support this hypothesis.Keywords
This publication has 58 references indexed in Scilit:
- ALTERNATIVE SPLICING IN THE CONTROL OF GENE EXPRESSIONAnnual Review of Genetics, 1989
- The organization of 3' splice-site sequences in mammalian introns.Genes & Development, 1989
- Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicingCell, 1989
- Effects of RNA secondary structure on alternative splicing of Pre-mRNA: Is folding limited to a region behind the transcribing RNA polymerase?Cell, 1988
- Analysis of RNase-A-resistant regions of adenovirus 2 major late precursor-mRNA in splicing extracts reveals an ordered interaction of nuclear components with the substrate RNAJournal of Molecular Biology, 1987
- A mutational analysis of spliceosome assembly: evidence for splice site collaboration during spliceosome formation.Genes & Development, 1987
- Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomesCell, 1987
- Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNACell, 1987
- A compensatory base change in U1 snRNA suppresses a 5′ splice site mutationCell, 1986
- Cryptic branch point activation allows accurate in vitro splicing of human β-globin intron mutantsCell, 1985