Microarray assay for detection and discrimination of Orthopoxvirus species
- 22 August 2006
- journal article
- research article
- Published by Wiley in Journal of Medical Virology
- Vol. 78 (10) , 1325-1340
- https://doi.org/10.1002/jmv.20698
Abstract
A microarray method was developed for simultaneous detection and identification of six species of Orthopoxvirus (OPV) including Variola, Monkeypox, Cowpox, Camelpox, Vaccinia, and Ectromelia viruses. The method allowed us to discriminate OPV species from varicella-zoster virus (VZV), Herpes Simplex 1 virus (HSV-1), and Herpes Simplex 2 virus (HSV-2) that cause infections with clinical manifestations similar to OPV infections. The nucleotide sequences of the C23L/B29R and the B19R genes identified for 86 and 72 different OPV strains, respectively, were used to design species-specific microarray oligonucleotide probes (oligoprobes). The microarray also contained several oligoprobes selected from the ORF31, US4, and US5 genes of VZV, HSV-1, and HSV-2, respectively. The samples (from HSVs or OPVs) of ssDNAs for analyses were prepared by using asymmetric PCR followed by chemical labeling of ssDNA with Cy3 dye. DNA from 52 samples of various OPV species, two isolates of VZV, two of HSV-1, and three of HSV-2 were tested using the developed microarray assay; all tested viruses were accurately identified. To ensure the robustness of the microarray assay, three additional unrelated variola virus strains with unknown sequences of the C23L/B29R and the B19R genes were tested. In each instance the microarray unambiguously identified them as Variola virus species. The results obtained in this study demonstrated that this new microarray method is a valuable tool for the rapid and accurate detection and differentiation of these important viral pathogens. J. Med. Virol. 78:1325–1340, 2006.Keywords
This publication has 26 references indexed in Scilit:
- Genomic Analysis of Vaccine-Derived Poliovirus Strains in Stool Specimens by Combination of Full-Length PCR and Oligonucleotide Microarray HybridizationJournal of Clinical Microbiology, 2005
- Real-Time PCR System for Detection of Orthopoxviruses and Simultaneous Identification of Smallpox VirusJournal of Clinical Microbiology, 2004
- Identification ofListeriaSpecies by Microarray-Based AssayJournal of Clinical Microbiology, 2002
- Sequence-specific identification of 18 pathogenic microorganisms using microarray technologyMolecular and Cellular Probes, 2002
- Species-Level Identification of Orthopoxviruses with an Oligonucleotide MicrochipJournal of Clinical Microbiology, 2002
- Countering the Posteradication Threat of Smallpox and PolioClinical Infectious Diseases, 2002
- Outbreak of Human Monkeypox, Democratic Republic of Congo, 1996 to 1997Emerging Infectious Diseases, 2001
- Detection and Differentiation of Old World Orthopoxviruses: Restriction Fragment Length Polymorphism of the crmB Gene RegionJournal of Clinical Microbiology, 2001
- Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species soecificityCell, 1995
- Sequence alterations within and downstream of the A-type inclusion protein genes allow differentiation of Orthopoxvirus species by polymerase chain reactionJournal of General Virology, 1994