Catalytic Addition of Aromatic Carbon–Hydrogen Bonds to Olefins with the Aid of Ruthenium Complexes

Abstract
Ruthenium complexes, e.g., Ru(H)2(CO)(PPh3)3, have been found to catalyze the addition of ortho C–H bonds of aromatic ketones to olefins with a high degree of efficiency and selectivity. 2′-Methylacetophenone reacts with various types of terminal olefins to give 1 : 1 coupling products in good to excellent yields. The C–C bond formation takes place exclusively at the terminal carbon atom of olefins except for styrene which affords a mixture of two regioisomers. Acetylnaphthalenes, cyclic aromatic ketones, and heteroaromatic ketones also react with triethoxyvinylsilane to give 1 : 1 addition products in virtually quantitative yields. From 2′-acetonaphthone or 3-acetylthiophene, in which two different reaction sites are available, only one out of four possible regioisomers is obtained. The importance of the coordination of the oxygen atom of the ketone to ruthenium and the intervention of a cyclometallation intermediate are suggested. A deuterium labeling experiment using acetophenone-d5 and triethoxyvinylsilane shows that an H/D exchange between the aromatic and olefinic positions takes place to some extent, even prior to the formation of the product. This implies that the rate-determining step is not the C–H bond cleavage step, but the product forming step.