Large-Eddy Simulation of the Convective Atmospheric Boundary Layer
- 1 June 1989
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 46 (11) , 1492-1516
- https://doi.org/10.1175/1520-0469(1989)046<1492:lesotc>2.0.co;2
Abstract
Large-eddy simulations of a free convective atmospheric boundary layer with an overlying capping inversion are considered. Attention is given to the dependence of the results upon the various factors influencing the simulation: the subgrid model, the domain size, and the mesh resolution. By providing artificial constraints upon the convection the results also provide extra insight into the underlying dynamics. The gross features of the boundary layer, such as the overall energy budget, are not sensitive to the details of the simulations but a number of important factors are revealed. It has been found that near the surface the subgrid diffusivity must be larger than is usually supposed, in order for the vertical velocity skewness to have the correct sign. This region of the flow has a significant subgrid-scale heat flux and it seems that the subgrid model requires improvement in such cases. A revised model which under statically unstable conditions allows the mixing-length of the subgrid-scale tu... Abstract Large-eddy simulations of a free convective atmospheric boundary layer with an overlying capping inversion are considered. Attention is given to the dependence of the results upon the various factors influencing the simulation: the subgrid model, the domain size, and the mesh resolution. By providing artificial constraints upon the convection the results also provide extra insight into the underlying dynamics. The gross features of the boundary layer, such as the overall energy budget, are not sensitive to the details of the simulations but a number of important factors are revealed. It has been found that near the surface the subgrid diffusivity must be larger than is usually supposed, in order for the vertical velocity skewness to have the correct sign. This region of the flow has a significant subgrid-scale heat flux and it seems that the subgrid model requires improvement in such cases. A revised model which under statically unstable conditions allows the mixing-length of the subgrid-scale tu...Keywords
This publication has 0 references indexed in Scilit: