A statistical approach to the inverse problem of aquifer hydrology: 1. Theory
- 1 August 1979
- journal article
- Published by American Geophysical Union (AGU) in Water Resources Research
- Vol. 15 (4) , 845-860
- https://doi.org/10.1029/wr015i004p00845
Abstract
A new statistically based approach to the problem of estimating spatially varying aquifer transmissivities on the basis of steady state water level data is presented. The method involves solving a family of generalized nonlinear regression problems and then selecting one particular solution from this family by means of a comparative analysis of residuals. A linearized error analysis of the solution is included. This analysis allows one to estimate the covariance of the transmissivity estimates as well as the square error of the estimates of hydraulic head. In addition to the explicitly statistical orientation of the method, it has an additional feature of permitting the user to incorporate a priori information about the transmissivities. This information may be based on actual field data such as pumping tests, or on statistical data accumulated from similar aquifers elsewhere in the world. A highly efficient explicit numerical scheme for solving the inverse problem in an approximate manner when errors in water level data are sufficiently small is also described. When these errors are large, the explicit scheme may still be useful for obtaining a rapid initial idea about the approximate location of the optimum solution. Paper 1 presents the theory and illustrates it by a theoretical example. The purpose of this example is to demonstrate the effectiveness of our method in dealing with noisy data obtained from a known model. Application of the method to real data will be described in paper 2.Keywords
This publication has 31 references indexed in Scilit:
- A method of estimating parameters and assessing reliability for models of steady state Groundwater flow: 2. Application of statistical analysisWater Resources Research, 1979
- A method of estimating parameters and assessing reliability for models of steady state groundwater flow: 1. Theory and numerical propertiesWater Resources Research, 1977
- Mixed explicit-implicit iterative finite element scheme for diffusion-type problems: I. TheoryInternational Journal for Numerical Methods in Engineering, 1977
- A stochastic‐conceptual analysis of one‐dimensional groundwater flow in nonuniform homogeneous mediaWater Resources Research, 1975
- The Effect of Errors in the Independent Variables in Linear RegressionBiometrika, 1975
- Correlation links between normal and log normal processesWater Resources Research, 1974
- Calibration of distributed parameter groundwater flow models viewed as a multiple‐objective decision process under uncertaintyWater Resources Research, 1973
- Restitution automatique des perméabilités d'une nappe le problème inverse et la déconvolutionLa Houille Blanche, 1969
- Statistical Estimation of the Numerical Solution of a Fredholm Integral Equation of the First KindJournal of the ACM, 1968
- On Beale's Measures of Non-linearityTechnometrics, 1965