Contribution of vasopressin to the maintenance of blood pressure during dehydration

Abstract
Normal Long-Evans rats, when dehydrated for up to 72 h, have a progressive rise in plasma vasopressin that is associated with a fall in body weight and urine volume, a rise in plasma and urine osmolality, and the maintenance of normal systolic blood pressure. In contrast, Brattleboro diabetes insipidus rats, genetically deficient in vasopressin, when dehydrated to achieve an equivalent body weight loss, have a significant 15 mmHg fall in systolic blood pressure. Even when fluid balance is corrected in the Brattleboro rats by the continuous administration of 1-desamino-8-D-arginine vasopressin, a synthetic vasopressin analogue with potent antidiuretic properties but minimal pressor activity, blood pressure still falls when the animals are dehydrated. In contrast, Brattleboro rats infused with exogenous arginine vasopressin to produce a plasma vasopressin level of 18.9 +/- 3.5 pg X ml-1 are able to maintain normal blood pressure during 48 h of dehydration. This level of vasopressin is comparable to the level found endogenously in dehydrated Long-Evans rats and is nonpressor in normal rats. These results suggest that both the antidiuretic and vasoconstrictor properties of vasopressin are important in the cardiovascular response to dehydration.