Abstract
Tomatoes (Lycopersicon esculentum L.) contained a high level of β-galactosidase activity which was due to three forms of the enzyme. During tomato ripening, the sum of their activities remained relatively constant, but the levels of the individual forms of β-galactosidase changed markedly. The three enzymes were separated by a combination of chromatography of DEAE-Sephadex A-50 and Sephadex G-100. During ripening of tomatoes, β-galactosidases I and III levels decreased but the β-galactosidase II level increased more than 3-fold. The three enzymes were optimally active near pH 4, and all were inhibited by galactose and galactonolactone. However, the enzymes differed in molecular weight, Km value with p-nitrophenyl-β-galactoside, and stability with respect to pH and temperature. β-Galactosidase II was the only enzyme capable of hydrolyzing a polysaccharide that was isolated from tomatoes and that consisted primarily of β-1, 4-linked galactose. The ability of β-galactosidase II to degrade the galactan and the increase in its activity during tomato ripening suggest a possible role for this enzyme in tomato softening.