Insulin‐like growth factor‐1 prevents age‐related decrease in specific force and intracellular Ca2+ in single intact muscle fibres from transgenic mice
Open Access
- 1 November 2003
- journal article
- research article
- Published by Wiley in The Journal of Physiology
- Vol. 552 (3) , 833-844
- https://doi.org/10.1113/jphysiol.2003.048165
Abstract
In the present work we test the hypothesis that sustained transgenic overexpression of insulin-like growth factor-1 (IGF-1) in skeletal muscle prevents age-related decreases in myoplasmic Ca2+ concentration and consequently in specific force in single intact fibres from the flexor digitorum brevis (FDB) muscle from the mouse. Measurements of IGF-1 concentration in FDB muscle showed higher levels in transgenic than in wild-type mice at all ages. The specific tetanic force decreased significantly in single muscle fibres from old (286 ± 22 kPa) compared to young wild-type (455 ± 28 kPa), young transgenic (423 ± 43 kPa), and old transgenic mice (386 ± 15 kPa) (P < 0.05). These results are consistent with measurements in whole FDB muscles. The peak Ca2+ concentration values in response to prolonged stimulation were: 1.47 ± 0.15, 1.70 ± 0.29, 0.97 ± 0.13 and 1.7 ± 0.22 μm, in fibres from young wild-type, young transgenic, old wild-type and old transgenic mice, respectively. The effects of caffeine on FDB fibres support the conclusion that the age-related decline in peak myoplasmic Ca2+ and specific force is not explained by sarcoplasmic reticulum Ca2+ depletion. Immunohistochemistry in muscle cross-sections was performed to determine whether age and/or IGF-1 overexpression induce changes in fibre type composition. The relative percentages of type IIa, IIx and I myosin heavy chain (MHC) isoforms did not change significantly with age or genotype. Therefore, IGF-1 prevents age-related decline in peak intracellular Ca2+ and specific force in a muscle that does not exhibit changes in fibre type composition with senescence.Keywords
This publication has 58 references indexed in Scilit:
- Charge movement and transcription regulation of L‐type calcium channel α1S in skeletal muscle cellsThe Journal of Physiology, 2002
- Age-dependent IGF-1 regulation of gene transcription of Ca2+ channels in skeletal muscleMechanisms of Ageing and Development, 2001
- Insulin‐like growth factor‐1 enhances rat skeletal muscle charge movement and L‐type Ca2+ channel gene expressionThe Journal of Physiology, 1999
- Age-related abnormalities in regulation of the ryanodine receptor in rat fast-twitch muscleCell Calcium, 1996
- Age, Gender, and Muscular StrengthThe Journals of Gerontology: Series A, 1995
- Muscle Function and Mobility Biomechanics in the Elderly: An Overview of Some Recent ResearchThe Journals of Gerontology: Series A, 1995
- The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibresBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1995
- Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers.The Journal of general physiology, 1991
- Ca2+and activation mechanisms in skeletal muscleQuarterly Reviews of Biophysics, 1991
- Voltage Dependent Charge Movement in Skeletal Muscle: a Possible Step in Excitation–Contraction CouplingNature, 1973