Automating document classification for the Immune Epitope Database
Open Access
- 26 July 2007
- journal article
- Published by Springer Nature in BMC Bioinformatics
- Vol. 8 (1) , 269
- https://doi.org/10.1186/1471-2105-8-269
Abstract
Background: The Immune Epitope Database contains information on immune epitopes curated manually from the scientific literature. Like similar projects in other knowledge domains, significant effort is spent on identifying which articles are relevant for this purpose. Results: We here report our experience in automating this process using Naïve Bayes classifiers trained on 20,910 abstracts classified by domain experts. Improvements on the basic classifier performance were made by a) utilizing information stored in PubMed beyond the abstract itself b) applying standard feature selection criteria and c) extracting domain specific feature patterns that e.g. identify peptides sequences. We have implemented the classifier into the curation process determining if abstracts are clearly relevant, clearly irrelevant, or if no certain classification can be made, in which case the abstracts are manually classified. Testing this classification scheme on an independent dataset, we achieve 95% sensitivity and specificity in the 51.1% of abstracts that were automatically classified. Conclusion: By implementing text classification, we have sped up the reference selection process without sacrificing sensitivity or specificity of the human expert classification. This study provides both practical recommendations for users of text classification tools, as well as a large dataset which can serve as a benchmark for tool developers.Keywords
This publication has 20 references indexed in Scilit:
- Substring selection for biomedical document classificationBioinformatics, 2006
- The design and implementation of the immune epitope database and analysis resourceImmunogenetics, 2005
- The Immune Epitope Database and Analysis Resource: From Vision to BlueprintPLoS Biology, 2005
- UniProt: the Universal Protein knowledgebaseNucleic Acids Research, 2004
- BIND: the Biomolecular Interaction Network DatabaseNucleic Acids Research, 2003
- Machine learning in automated text categorizationACM Computing Surveys, 2002
- DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactionsNucleic Acids Research, 2002
- Automated learning of decision rules for text categorizationACM Transactions on Information Systems, 1994
- An algorithm for suffix strippingProgram: electronic library and information systems, 1980
- Relevance weighting of search termsJournal of the American Society for Information Science, 1976