Quantum Hall plateau transitions in disordered superconductors

Abstract
We study a delocalization transition for non-interacting quasiparticles moving in two dimensions, which belongs to a new symmetry class. This symmetry class can be realised in a dirty, gapless superconductor in which time reversal symmetry for orbital motion is broken, but spin rotation symmetry is intact. We find a direct transition between two insulating phases with quantized Hall conductances of zero and two for the conserved quasiparticles. The energy of quasiparticles acts as a relevant, symmetry-breaking field at the critical point, which splits the direct transition into two conventional plateau transitions.

This publication has 0 references indexed in Scilit: