Analysis of Covariance Structures Under Elliptical Distributions
- 1 December 1987
- journal article
- research article
- Published by JSTOR in Journal of the American Statistical Association
- Vol. 82 (400) , 1092
- https://doi.org/10.2307/2289385
Abstract
This article examines the adjustment of normal theory methods for the analysis of covariance structures to make them applicable under the class of elliptical distributions. It is shown that if the model satisfies a mild scale invariance condition and the data have an elliptical distribution, the asymptotic covariance matrix of sample covariances has a structure that results in the retention of many of the asymptotic properties of normal theory methods. If a scale adjustment is applied, the likelihood ratio tests of fit have the usual asymptotic chi-squared distributions. Difference tests retain their property of asymptotic independence, and maximum likelihood estimators retain their relative asymptotic efficiency within the class of estimators based on the sample covariance matrix. An adjustment to the asymptotic covariance matrix of normal theory maximum likelihood estimators for elliptical distributions is provided. This adjustment is particularly simple in models for patterned covariance or correlation matrices. These results apply not only to normal theory maximum likelihood methods but also to a class of minimum discrepancy methods. Similar results also apply when certain robust estimators of the covariance matrix are employed.Keywords
This publication has 0 references indexed in Scilit: