On the Likelihood Ratio Test for the Number of Factors in Exploratory Factor Analysis

Abstract
In the exploratory factor analysis, when the number of factors exceeds the true number of factors, the likelihood ratio test statistic no longer follows the chi-square distribution due to a problem of rank deficiency and nonidentifiability of model parameters. As a result, decisions regarding the number of factors may be incorrect. Several researchers have pointed out this phenomenon, but it is not well known among applied researchers who use exploratory factor analysis. We demonstrate that overfactoring is one cause for the well-known fact that the likelihood ratio test tends to find too many factors.

This publication has 39 references indexed in Scilit: