Experimental brain infarcts in cats. I. Pathophysiological observations.
- 1 November 1980
- journal article
- research article
- Published by Wolters Kluwer Health in Stroke
- Vol. 11 (6) , 583-592
- https://doi.org/10.1161/01.str.11.6.583
Abstract
In 48 cases the left middle cerebral artery was occluded under light barbiturate anaesthesia using a transorbital approach. The animals were kept alive for 1, 2, and 4 hours after vascular occlusion. Regional cerebral blood flow was measured by the intracardiac microsphere injection technique before ischemia, 15 min after the onset of ischemia, and at the end of experiments. The density of regional ischemia was correlated with EEG changes and with the electrolyte, water and metabolite content of the same tissue samples in which blood flow was assessed. In the territory of the occluded middle cerebral artery, cortical blood flow decreased from 41.4 +/- 3.8 to 21.3 +/- 4.0 ml/100 g/min (means +/- SE), the actual flow rate depending on the individual efficacy of collateral blood supply. At flow rates below 10--15 ml/100 g/min, ischemia involved more than 50% of the middle cerebral artery territory, water and electrolyte homeostasis was severely disturbed and ischemic brain edema developed. Adenosine triphosphate decreased to about 60% of the control value at flow rates below 40 ml/100 g/min, but it remained at this level down to flow rates as low as 5 ml/100 g/min. EEG intensity -- but not EEG frequency -- decreased in parallel with blood flow, indicating that with increasing density of ischemia an increasing portion of the excitable neuropil was inhibited. The development of ischemic brain edema determined the further progression of ischemia. When blood flow decreased below the threshold for water and ion disturbance, ischemia was progressive (critical ischemia), but an amelioration of flow occurred in animals in which flow remained above this level (non-critical ischemia). In the contralateral hemisphere the EEG, blood flow, water and electrolyte content did not change significantly during the initial few hours of ischemia. Diaschisis, in consequence, was not a prominent feature during the early phase of infarct development.This publication has 25 references indexed in Scilit:
- Experimental peritumorous edemaActa Neuropathologica, 1979
- Pathophysiology of Stroke EdemaPublished by Springer Nature ,1979
- XIII. Cerebral circulation and metabolism in stroke. Cerebral circulation and metabolism in stroke study group.Stroke, 1976
- Development and Resolution of Ischemic Brain SwellingPublished by Springer Nature ,1976
- Regional Cerebral Metabolism in Experimental Brain InfarctionPublished by Springer Nature ,1975
- Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboonExperimental Neurology, 1974
- Clinical applications of spectral analysis and extraction of features from electroencephalograms with slow waves in adult patientsElectroencephalography and Clinical Neurophysiology, 1973
- EFFECTS OF HYPERVENTILATION WITH AND WITHOUT CARBON DIOXIDE ON EXPERIMENTAL CEREBRAL ISCHEMIA AND INFARCTION: STUDIES OF REGIONAL CEREBRAL BLOOD FLOW AND HISTOPATHOLOGY AFTER OCCLUSION OF A MIDDLE CEREBRAL ARTERY IN CATSBrain, 1972
- Restoration of Middle Cerebral Artery Flow in Experimental InfarctionJournal of Neurosurgery, 1969
- The Circulation of the Fetus in UteroCirculation Research, 1967