A Fredholm Determinant for Semi-classical Quantization

Abstract
We investigate a new type of approximation to quantum determinants, the ``\qFd", and test numerically the conjecture that for Axiom A hyperbolic flows such determinants have a larger domain of analyticity and better convergence than the \qS s derived from the \Gt. The conjecture is supported by numerical investigations of the 3-disk repeller, a normal-form model of a flow, and a model 2-$d$ map.

This publication has 0 references indexed in Scilit: