Mesoscale Simulation of Rapid Soil Drying and Its Implications for Predicting Daytime Temperature
Open Access
- 1 February 2001
- journal article
- Published by American Meteorological Society in Journal of Hydrometeorology
- Vol. 2 (1) , 71-88
- https://doi.org/10.1175/1525-7541(2001)002<0071:msorsd>2.0.co;2
Abstract
Rapid soil-surface drying, which is called “decoupling,” accompanied by an increase in near-surface air temperature and sensible heat flux, is typically confined to the top 1–2 cm of the soil, while the deeper layers remain relatively moist. Because decoupling depends also on a precise knowledge of fractional vegetation cover, soil properties, and soil water content, an accurate knowledge of these parameters is essential for making good predictions of temperature and humidity. Accordingly, some simulations centered on the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed Southern Great Plains site in Kansas and Oklahoma using a high-resolution substrate layer (Simulator for Hydrology and Energy Exchange at the Land Surface), the Fifth-Generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, and derived and default values for soil water content and fractional vegetation cover are presented. In so doing, the following points are made: 1... Abstract Rapid soil-surface drying, which is called “decoupling,” accompanied by an increase in near-surface air temperature and sensible heat flux, is typically confined to the top 1–2 cm of the soil, while the deeper layers remain relatively moist. Because decoupling depends also on a precise knowledge of fractional vegetation cover, soil properties, and soil water content, an accurate knowledge of these parameters is essential for making good predictions of temperature and humidity. Accordingly, some simulations centered on the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed Southern Great Plains site in Kansas and Oklahoma using a high-resolution substrate layer (Simulator for Hydrology and Energy Exchange at the Land Surface), the Fifth-Generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, and derived and default values for soil water content and fractional vegetation cover are presented. In so doing, the following points are made: 1...Keywords
This publication has 0 references indexed in Scilit: