The role of active forces and intersegmental dynamics in the control of limb trajectory over obstacles during locomotion in humans

Abstract
The focus of this paper is to examine the contributions of active and passive forces in the control of limb trajectory over obstacles during locomotion. Kintetic analyses of the swing phase of locomotion were carried out to determine the power profiles at various joints and to parcel the joint moments into moments due to muscle action, gravitational force and motion-dependent terms. The analyses revealed that toe elevation over the obstacles was achieved primarily by flexing at the hip, knee and ankle joint. Power analyses showed that translational energy applied at the hip joint and rotational energy applied at the knee joint were modulated as functions of obstacle height. This demonstrates that increased hip and ankle joint flexion are achieved not through active muscle action but rather through passive forces induced by translational action at the hip (representing contribution by the stance limb muscles) and rotational action at the knee joint. Parcelling the joint moment terms into various components clearly shows how the nervous system exploits intersegmental dynamics to simplify control of limb elevation over obstacles and minimize energy costs.