Abstract
The different methods for constructing a gauge-invariant effective action (GIEA) for quantum non-Abelian gauge field theories proposed by 't Hooft, DeWitt, Boulware, and Abbott are all shown to be equivalent. In the course of proving this equivalence we show how to extend the usual background-field method so as to construct what may be considered the prototypical GIEA and discuss in some detail the invariance and gauge transformation properties of both the usual theory and the new theory using the GIEA. All solutions to the GIEA field equations are shown to be physical—being solutions to the usual field equations with an arbitrary gauge condition. The renormalization program based upon the GIEA is shown to differ from the standard theory and we outline the modifications which are needed in the present proof of renormalizability. In particular we prove that the physical renormalization is independent of any gauge-fixing choice. Finally, we prove that the S-matrix elements derived from the GIEA for an arbitrary background-field solution to the field equations are the same as those derived using the usual effective action.