Abstract
Upper and lower bounds for the eigenvalues of uniform simply supported beams carrying uniformly distributed axial load and constant end load are obtained. The upper bounds were calculated by the Rayleigh-Ritz method, and the lower bounds by a method due to Bazley and Fox. Some results are given in terms of two loading parameters. In most cases the gap between the bounds over their average is less than 1 per cent, except for values of the loading parameters corresponding to the beam near buckling. The results are compared with the eigenvalues of the same beam carrying half of the distributed load lumped at each end. The errors made in the lumping process are very large when the distributed load and the end load are of opposite signs. The results also indicate that the Rayleigh-Ritz upper bounds computed with the eigenfunctions of the unloaded beam as co-ordinate functions are quite accurate.

This publication has 6 references indexed in Scilit: