Enhanced Postischemic Functional Recovery in CYP2J2 Transgenic Hearts Involves Mitochondrial ATP-Sensitive K + Channels and p42/p44 MAPK Pathway

Abstract
Human CYP2J2 is abundant in heart and active in the biosynthesis of epoxyeicosatrienoic acids (EETs); however, the functional role of this P450 and its eicosanoid products in the heart remains unknown. Transgenic mice with cardiomyocyte-specific overexpression of CYP2J2 were generated. CYP2J2 transgenic (Tr) mice have normal heart anatomy and basal contractile function. CYP2J2 Tr hearts have improved recovery of left ventricular developed pressure (LVDP) compared with wild-type (WT) hearts after 20 minutes ischemia and 40 minutes reperfusion. Perfusion with the selective P450 epoxygenase inhibitor N-methylsulphonyl-6-(2-proparglyloxyphenyl)hexanamide (MS-PPOH) for 20 minutes before ischemia results in reduced postischemic LVDP recovery in WT hearts and abolishes the improved postischemic LVDP recovery in CYP2J2 Tr hearts. Perfusion with the ATP-sensitive K+ channel (KATP) inhibitor glibenclamide (GLIB) or the mitochondrial KATP (mitoKATP) inhibitor 5-hydroxydecanoate (5-HD) for 20 minutes before ischemia ...