Abstract
The inward movement of sodium ions and the outward movement of potassium ions are passive and the reverse movements against the electrochemical gradients require the activity of a metabolism-driven Na+/K+-pump. The activity of the Na+/K+-pump influences the membrane potential directly and indirectly. Thus, the maintenance of a normal electrical function requires that the Na+/K+-pump maintain normal ionic concentrations within the cell. The activity of the Na+/K+-pump also influences the membrane potential directly by generating an outward sodium current that is larger when the Na+/K+-pump activity is greater. The activity of the Na+/K+-pump is regulated by several factors including the intracellular sodium concentration and the neuromediators norepinephrine and acetylcholine. The inhibition of the Na+/K+-pump can lead indirectly to the development of inward currents that may cause repetitive activity. Therefore, the Na+/K+-pump modifies the membrane potential in different ways both under normal and abnormal conditions and influences in an essential way many cardiac functions, including automaticity, conduction and contraction.