Gravity in Non-Commutative Geometry
Preprint
- 2 November 1992
Abstract
We study general relativity in the framework of non-commutative differential geometry. In particular, we introduce a gravity action for a space-time which is the product of a four dimensional manifold by a two-point space. In the simplest situation, where the Riemannian metric is taken to be the same on the two copies of the manifold, one obtains a model of a scalar field coupled to Einstein gravity. This field is geometrically interpreted as describing the distance between the two points in the internal space.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: