Abstract
Carbon dioxide exchange, transpiration, chlorophyll fluorescence and light scattering of leaves of Lycopersicom esculentum, Helianthus annuus and Arbutus unedo were measured simultaneously before and after abscission of leaves. Scattering of a weak green measuring beam was used to monitor water fluxes across the thylakoid membranes of the mesophyll. When leaves were cut under water, stomata initially closed partially and then occasionally exhibited distinct regulatory oscillations. As stomata closed, light scattering decreased indicating water influx into the mesophyll. Stomatal oscillations were accompanied, with small but noticeable phase shifts, by oscillations of water fluxes at the thylakoid level. These fluxes could be distinguished from the water fluxes accompanying light-dependent ion pumping across the thylakoids by the concomitant chlorophyll fluorescence signals. The latter record energy-dependent ion fluxes in addition to redox changes of the electron-transport chain. As stomata closed partially after cutting a leaf under water, photosynthesis decreased. In Arbutus unedo and Helianthus annuus leaves, transient stomatal closure was insufficient to account for transient inhibition of photosynthesis which appeared to be brought about by transfer of an inhibitory solute through the petiole into the mesophyll. This solute also stimulated respiration in the dark. When leaves were cut in air, stomata opened transiently (Iwanoff effect) before wilting enforced closure. Photosynthesis followed the stomatal responses, increasing during opening and decreasing during closure.

This publication has 25 references indexed in Scilit: