Abstract
We investigate the possibility of lens mass determination for a caustic crossing microlensing event based on a space telescope observation. We demonstrate that the parallax due to the orbital motion of a space telescope causes a periodic fluctuation of the light curve, from which the lens distance can be derived. Since the proper motion of the lens relative to the source is also measurable for a caustic crossing event, one can find a full solution for microlensing properties of the event, including the lens mass. To determine the lens mass with sufficient accuracy, the light curve near the caustic crossing should be observed within uncertainty of ~1%. We argue that the Hubble Space Telescope observation of the caustic crossing supplied with ground-based observations of the full light curve will enable us to determine the mass of MACHOs, which is crucial for understanding the nature of MACHOs.
All Related Versions