Mode coupling in a He-Ne ring laser with backscattering
- 1 October 1990
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review A
- Vol. 42 (7) , 4315-4324
- https://doi.org/10.1103/physreva.42.4315
Abstract
An alternative approach is proposed to discuss mode coupling in bidirectional ring lasers that is induced by backscattering. It is shown that various features can be simply discussed in terms of the mode structure of the corresponding passive ring cavity. The nature of the backscattering is found to play a crucial role in determining the normal-mode structure. For instance, we show theoretically that, for a rotating ring laser (gyro), the characteristics of frequency locking are already present in the passive-mode structure if the mode coupling has a dissipative nature, i.e., if the backscattering originates in localized losses. If, on the other hand, the backscattering has a conservative nature, i.e., originates in steps of the refractive index, a frequency splitting is found in the passive-mode structure, making so-called oscillatory instability possible. Experimental observations are reported to support this point of view. The recently reported π-phase jumps in He-Ne ring lasers are shown to fit naturally into this scheme. These jumps can be described as transitions between the normal modes of the passive ring cavity.Keywords
This publication has 21 references indexed in Scilit:
- Dynamical frequency shifts and intensity pulsations in an FIR bidirectional ring laserOptics Communications, 1988
- Investigation of backscattering effects on the correlation properties of a He–Ne ring laserJournal of the Optical Society of America B, 1988
- Observation of random π phase jumps in a ring laser with backscatteringOptics Communications, 1988
- Reducing the effects of backscattering on the behavior of a ring laserOptics Letters, 1987
- Frequency dependence of a ring laser with backscatteringPhysical Review A, 1986
- The ring laser gyroReviews of Modern Physics, 1985
- Frequency locking of modes in a ring laserIEEE Journal of Quantum Electronics, 1985
- Theory of a Ring LaserPhysical Review A, 1973
- Single-isotope Laser GyroApplied Optics, 1972
- Lock-In and Intensity-Phase Interaction in the Ring LaserJournal of Applied Physics, 1970