Molecular diagnosis of haemoglobin disorders

Abstract
The haemoglobinopathies refer to a diverse group of inherited disorders characterized by a reduced synthesis of one or more globin chains (thalassaemias) or the synthesis of a structurally abnormal haemoglobin (Hb). In prevalent regions, the thalassaemias often coexist with a variety of structural Hb variants giving rise to complex genotypes and an extremely wide spectrum of clinical and haematological phenotypes. An appreciation of these phenotypes is needed to facilitate the definitive diagnosis of the causative mutations to inform management and counselling. Haematological and biochemical investigations, and family studies provide essential clues to the different interactions and are fundamental to DNA diagnostics of the Hb disorders. With the exception of a few rare deletions and rearrangements, the molecular lesions causing haemoglobinopathies are all identifiable by PCR-based techniques. Although a full spectrum of >1000 mutations causing haemoglobinopathies has been documented, in practice only a limited number are associated with disease states and clinical significance. Furthermore, each at-risk ethnic group has its own combination of common Hb variants and thalassaemia mutations. Prior identification of the ethnic origin is thus an important part of the diagnostic strategy which becomes less reliable in the UK because of the large ethnic mix. Although the current approach using a combination of different PCR-based techniques seems to work in most laboratories, practice pressures with the imminent implementation of universal antenatal screening for clinically significant Hb disorders in the UK will require a higher throughput approach for DNA diagnostics in the near future. The complex mutational spectrum and the compactness of the globin genes places them in an ideal position for the different non-gel based analytical platforms.