Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM
- 26 March 2002
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 99 (7) , 4278-4283
- https://doi.org/10.1073/pnas.072435699
Abstract
Under a stretching force, the sugar ring of polysaccharide molecules switches from the chair to the boat-like or inverted chair conformation. This conformational change can be observed by stretching single polysaccharide molecules with an atomic force microscope. In those early experiments, the molecules were stretched at a constant rate while the resulting force changed over wide ranges. However, because the rings undergo force-dependent transitions, an experimental arrangement where the force is the free variable introduces an undesirable level of complexity in the results. Here we demonstrate the use of force-ramp atomic force microscopy to capture the conformational changes in single polysaccharide molecules. Force-ramp atomic force microscopy readily captures the ring transitions under conditions where the entropic elasticity of the molecule is separated from its conformational transitions, enabling a quantitative analysis of the data with a simple two-state model. This analysis directly provides the physico-chemical characteristics of the ring transitions such as the width of the energy barrier, the relative energy of the conformers, and their enthalpic elasticity. Our experiments enhance the ability of single-molecule force spectroscopy to make high-resolution measurements of the conformations of single polysaccharide molecules under a stretching force, making an important addition to polysaccharide spectroscopy.Keywords
This publication has 30 references indexed in Scilit:
- Single-Molecule Force Spectroscopy on Carrageenan by Means of AFMMacromolecular Rapid Communications, 2001
- The Study of Molecular Interactions by AFM Force SpectroscopyMacromolecular Rapid Communications, 2001
- Local Dynamics of Carbohydrates. 1. Dynamics of Simple Glycans with Different Chain LinkagesThe Journal of Physical Chemistry B, 1999
- Elastically Coupled Two-Level Systems as a Model for Biopolymer ExtensibilityPhysical Review Letters, 1998
- Single-Molecule Force Spectroscopy on Xanthan by AFMAdvanced Materials, 1998
- Sensing specific molecular interactions with the atomic force microscopeBiosensors and Bioelectronics, 1995
- A Conformational Study of Hydroxymethyl Groups in Carbohydrates Investigated by 1H NMR SpectroscopyJournal of Carbohydrate Chemistry, 1994
- Flexibility of the pyranose ring in α‐ and β‐D‐glucosesBiopolymers, 1979
- Models for the Specific Adhesion of Cells to CellsScience, 1978
- Conformational structure, energy, and inversion rates of cyclohexane and some related oxanesJournal of the American Chemical Society, 1970