Lineage-Specific Expression of Human Immunodeficiency Virus (HIV) Receptor/Coreceptors in Differentiating Hematopoietic Precursors: Correlation With Susceptibility to T- and M-Tropic HIV and Chemokine-Mediated HIV Resistance
Open Access
- 1 September 1999
- journal article
- Published by American Society of Hematology in Blood
- Vol. 94 (5) , 1590-1600
- https://doi.org/10.1182/blood.v94.5.1590
Abstract
Human immunodeficiency virus (HIV) entry is mediated not only by the CD4 receptor, but also by interaction with closely related molecules that act as membrane coreceptors. We have analyzed mRNA expression and/or cell membrane exposition of the coreceptors most widely used by diverse HIV-1 strains (CXCR4, CCR5, and CCR3) on purified hematopoietic progenitor cells (HPCs) induced in liquid suspension culture to unilineage differentiation/maturation through the erythroid (E), granulocytic (G), megakaryocytic (Mk), and monocytic (Mo) lineages. Reverse transcriptase-polymerase chain reaction (RT-PCR) and cytofluorimetric analysis showed the presence of both CXCR4 and CCR5 in quiescent HPCs, but failed to detect CCR3-specific transcripts. Chemokine expression in HPC progenies showed that CXCR4 receptor is detected on the majority of MKs from early to late stages of maturation, whereas it is moderately decreased in the Mo lineage. In the G pathway, two distinct cell populations, CXCR4+ and CXCR4−, were observed: morphological analysis of the sorted populations showed that the CXCR4+ cells were largely eosinophils and the CXCR4− were granulocytes of the neutrophilic series. Furthermore, in the E pathway, CXCR4 was almost completely absent. CCR5 expression is restricted to Mo cultures, ie, ≈30% to 80% cells throughout all monocytopoietic differentiation/maturation stages. Finally, CCR3 mRNA is always absent in all the unilineage cultures. Evaluation of CD4 expression by flow cytometry on both quiescent HPCs and differentiating unilineage precursors showed that the CD4 receptor is present on ≈15% of the starting CD34+ HPC population, highly expressed in the Mo lineage up to 80% at terminal maturation, present on 20% to 30% of maturing Mks, and not detectable in either the E or G lineage. Expression of CD4 receptor together with CXCR4 and/or CCR5 coreceptor in the four lineages correlates with hematopoietic precursor susceptibility to T-lymphotropic and macrophage (M)-tropic HIV strains infection: (1) CD4− G and E cells were resistant to both M-tropic and T-lymphotropic strains; (2) HPC-derived Mks were susceptible to T-tropic, but resistant to M-tropic, infection; (3) Mo differentiating cells efficiently replicate both HIV strains. Furthermore, we showed that the CXCR4 and CCR5 ligands (stromal-derived factor 1 and macrophage-inflammatory protein-1 [MIP-1], MIP-1β and RANTES, respectively) inhibit HIV replication in both maturing Mo and Mk cells. Taken together, our data show a lineage-specific modulation of chemokine receptor/coreceptor during hematopoietic cell differentiation and extend previous observations on the relationship between the expression of HIV receptor/coreceptors, susceptibility, and chemokine-mediated resistance to HIV infection.Keywords
This publication has 51 references indexed in Scilit:
- Unilineage hematopoietic differentiation in bulk and single cell cultureThe International Journal of Cell Cloning, 2009
- Change in Coreceptor Use Correlates with Disease Progression in HIV-1–Infected IndividualsThe Journal of Experimental Medicine, 1997
- The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1Nature, 1996
- The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entryNature, 1996
- The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 IsolatesPublished by Elsevier ,1996
- CC CKR5: A RANTES, MIP-1α, MIP-1β Receptor as a Fusion Cofactor for Macrophage-Tropic HIV-1Science, 1996
- A Dual-Tropic Primary HIV-1 Isolate That Uses Fusin and the β-Chemokine Receptors CKR-5, CKR-3, and CKR-2b as Fusion CofactorsCell, 1996
- Identification of RANTES, MIP-1α, and MIP-1β as the Major HIV-Suppressive Factors Produced by CD8 + T CellsScience, 1995
- A recombinant retrovirus carrying a non-producer human immunodeficiency virus (HIV) type 1 variant induces resistance to superinfecting HIVJournal of General Virology, 1993
- "Pure" Human Hematopoietic Progenitors: Permissive Action of Basic Fibroblast Growth FactorScience, 1990