Numerical Homogenization of Monotone Elliptic Operators

Abstract
In this paper we construct a numerical homogenization technique for nonlinear elliptic equations. In particular, we are interested in when the elliptic flux depends on the gradient of the solution in a nonlinear fashion which makes the numerical homogenization procedure nontrivial. The convergence of the numerical procedure is presented for the general case using G-convergence theory. To calculate the fine scale oscillations of the solutions we propose a stochastic two-scale corrector where one of the scales is a numerical scale and the other is a physical scale. The analysis of the convergence of two-scale correctors is performed under the assumption that the elliptic flux is strictly stationary with respect to spatial variables. The nonlinear multiscale finite element method has been proposed and analyzed.