Diagnosing hot electron production by short pulse, high intensity lasers using photonuclear reactions

Abstract
Solid targets irradiated with 1019W/cm2 or greater of 1 μm light in picosecond pulses are found to be radioactive. The strongest activities observed are the result of photonuclear reactions in which an energetic photon excites the nucleus sufficiently to produce particle emission leaving a radioactive daughter. The photoreaction cross sections are known for a wide range of nuclei and provide a quantitative measure of the photon flux produced in the target. Both the delayed daughter activities and measurements of the prompt particles emitted in the reaction can be used as diagnostics. Examples of these techniques applied in diagnosing experiments at the Nova laser facility adapted to generate petawatt pulses using chirped pulse amplification will be presented. These results will be compared with bremsstrahlung photon spectra calculated using electron spectra measured in a magnetic spectrograph.