The Catalytic Role of the Active Site Aspartic Acid in Serine Proteases
- 21 August 1987
- journal article
- research article
- Published by American Association for the Advancement of Science (AAAS) in Science
- Vol. 237 (4817) , 909-913
- https://doi.org/10.1126/science.3303334
Abstract
The role of the aspartic acid residue in the serine protease catalytic triad Asp, His, and Ser has been tested by replacing Asp102 of trypsin with Asn by site-directed mutagenesis. The naturally occurring and mutant enzymes were produced in a heterologous expression system, purified to homogeneity, and characterized. At neutral pH the mutant enzyme activity with an ester substrate and with the Ser195-specific reagent diisopropylfluorophosphate is approximately 10(4) times less than that of the unmodified enzyme. In contrast to the dramatic loss in reactivity of Ser195, the mutant trypsin reacts with the His57-specific reagent, tosyl-L-lysine chloromethylketone, only five times less efficiently than the unmodified enzyme. Thus, the ability of His57 to react with this affinity label is not severely compromised. The catalytic activity of the mutant enzyme increases with increasing pH so that at pH 10.2 the kcat is 6 percent that of trypsin. Kinetic analysis of this novel activity suggests this is due in part to participation of either a titratable base or of hydroxide ion in the catalytic mechanism. By demonstrating the importance of the aspartate residue in catalysis, especially at physiological pH, these experiments provide a rationalization for the evolutionary conservation of the catalytic triad.This publication has 33 references indexed in Scilit:
- A pharmacokinetic analysis program (multi) for microcomputer.Journal of Pharmacobio-Dynamics, 1981
- Molecular structure of the α-lytic protease from Myxobacter 495 at 2·8 Å resolutionJournal of Molecular Biology, 1979
- Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of .alpha.-lytic protease. Implications for the charge-relay mechanism of peptide-bond cleavage by serine proteasesJournal of the American Chemical Society, 1978
- Molecular structure of crystalline Streptomyces griseus protease A at 2.8 å resolutionJournal of Molecular Biology, 1978
- The structure of bovine trypsin : Electron density maps of the inhibited enzyme at 5 Å and at 2·7 Å resolutionJournal of Molecular Biology, 1974
- The charge relay system in chymotrypsin and chymotrypsinogenJournal of Molecular Biology, 1973
- Structure of crystalline α-chymotrypsinJournal of Molecular Biology, 1972
- Acylation of chymotrypsin by active esters of nonspecific substrates. Evidence for a transient acylimidazole intermediateBiochemistry, 1972
- On the elucidation of the pH dependence of chymotrypsin catalyzed reactions at alkaline pHBiochemical and Biophysical Research Communications, 1966
- Peptides combined with 14C-diisopropyl phosphoryl following degradation of 14C-DIP-trypsin with α-chymotrypsinBiochimica et Biophysica Acta, 1956