Effects of BDNF and NT‐4/5 on Striatonigral Neuropeptides or Nigral GABA Neurons In Vivo

Abstract
Supranigral infusions of the TrkB-receptor-preferring neurotrophins BDNF or NT-4/5 augment locomotor behaviours, pars compacta firing rates and striatal dopamine metabolism. However these actions of BDNF or NT-4/5 may involve other neurotransmitter systems in addition to dopamine neurons in the substantia nigra. We thus investigated the effects of 2-week supranigral infusions of BDNF or NT-4/5 on rat peptidergic striatonigral neurons and nigral GABAergic neurons. Radioimmunoassay revealed that BDNF and NT-4/5 elevated substantia nigra levels of substance P (by 46 and 57% respectively) and substance K (by 64 and 81%). In addition, BDNF elevated substance K by 59% in a nigral projection area, the superior colliculus. NT-4/5 elevated dynorphin A in the substantia nigra (by 52%) and met-enkephalin in substantia nigra and globus pallidus (by 89%). None of these neuropeptides were altered in the striatum. Consistent with these findings, supranigral infusions of BDNF elevated the mRNA for preprotachykinin A in striatal neurons. In the same animals, glutamic acid decarboxylase (GAD)67 mRNA was increased by 48% in the substantia nigra. The cross-sectional area of GAD67-positive neuronal somata in the BDNF-infused nigra was increased by 59%, and 70% of nigral GABAergic neurons had a cross-sectional area >550 μm2, whereas 95% of the neurons in vehicle-infused animals had cross-sectional areas 2. Thus, supranigral infusions of BDNF or NT-4/5 increase tachykinin mRNA and protein levels within striatonigral neurons and increase the size and GAD67 mRNA expression levels of nigral GABAergic neurons. These results suggest that BDNF or NT-4/5 may modify the output of the basal ganglia not only through effects on dopamine neurons but also by increasing neurotransmission in striatonigral peptidergic and nigral GABAergic pathways.

This publication has 58 references indexed in Scilit: