Consider the adaptive solution of two-dimensional vector systems of hyperbolic and elliptic partial differential equations on shared-memory parallel computers. Hyperbolic systems are approximated by an explicit finite volume technique and solved by a recursive local mesh refinement procedure on a tree- structured grid. Local refinement of the time steps and spatial cells of a coarse base mesh is performed in regions where a refinement indicator exceeds a prescribed tolerance. Computational procedures that sequentially traverse the tree while processing solutions on each grid in parallel, that process solutions at the same tree level in parallel, and that dynamically assign processors to nodes of the tree have been developed and applied to an example. Computational results comparing a variety of heuristic processor load balancing techniques and refinement strategies are presented.