Abstract
A special set of computer‐generated complex tones is shown to lead to a complete breakdown of transitivity in judgments of relative pitch. Indeed, the tones can be represented as equally spaced points around a circle in such a way that the clockwise neighbor of each tone is judged higher in pitch while the counterclockwise neighbor is judged lower in pitch. Diametrically opposed tones—though clearly different in pitch—are quite ambiguous as to the direction of the difference. The results demonstrate the operation of a “proximity principle” for the continuum of frequency and suggest that perceived pitch cannot be adequately represented by a purely rectilinear scale.

This publication has 0 references indexed in Scilit: