The reactivity of Bw4+ HLA-B and HLA-A alleles with KIR3DL1: implications for patient and donor suitability for haploidentical stem cell transplantations

Abstract
Natural killer (NK)–cell alloreactivity can be exploited in haploidentical hematopoietic stem cell transplantation (HSCT). NK cells from donors whose HLA type includes Bw4, a public epitope present on a subset of HLA-B alleles, can be alloreactive toward recipients whose cells lack Bw4. Serologically detectable epitopes related to Bw4 also exist on a subset of HLA-A alleles, but the interaction of these alleles with KIR3DL1 is controversial. We therefore undertook a systematic analysis of the ability of most common HLA-B alleles and HLA-A alleles with Bw4 serologic reactivity to protect target cells from lysis by KIR3DL1-dependent NK cells. All Bw4 HLA-B alleles failed to protect target cells from lysis. All Bw4+ HLA-B alleles with the exception of HLA-B*1301 and -B*1302 protected targets from lysis. HLA-A*2402 and HLA-A*3201 unequivocally protected target cells from lysis, whereas HLA-A*2501 and HLA-A*2301 provided only weak protection from lysis. KIR3DL1-dependent alloreactive NK clones were identified in donors with HLA-A*2402 but not in donors with HLA-B*1301 or -B*1302. These findings clarify the HLA types that donors and recipients need in haploidentical HSCT and other NK allotherapies in order to benefit from NK alloreactivity.