Compactness principles in nonlinear operator approximation theory

Abstract
This paper is concerned with the approximate solution of nonlinear operator equations in abstract settings and with applications to integral and differential equations. A given operator with certain continuity and compactness or inverse compactness properties is a suitable limit of a sequence of operators with analogous properties which hold uniformly or asymptotically. Both fixed point equations and inhomogeneous equations are treated. Solutions of approximate problems converge to solutions of the given problem. This is an appropriate type of set convergence when solutions are not unique.

This publication has 6 references indexed in Scilit: