On rate conservation for non-stationary processes

Abstract
This paper extends the rate conservation principle to cadlag processes whose jumps form a non-stationary point process with a time-dependent intensity. It is shown that this is a direct consequence of path integration and the strong law of large numbers for local martingales. When specialized to mean rates a non-stationary version of Miyazawa's result is obtained which is recovered in the stationary case. Some applications of the result are also given.