Fragile X mental retardation protein in plasticity and disease

Abstract
Fragile X syndrome is the most common cause of mental retardation known to be inherited. The syndrome results from the suppressed expression of a single protein, the fragile X mental retardation protein (FMRP). Understanding the function and regulation of FMRP can, therefore, offer insights into both the pathophysiology of fragile X syndrome and the molecular mechanisms of learning and memory. We provide an overview of current concepts of how FMRP functions in the nervous system, with special emphasis on recent evidence that FMRP has a role in metabotropic glutamate receptor-activated protein translation and synaptic plasticity.