A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage
Open Access
- 1 August 1993
- journal article
- Published by The Company of Biologists in Development
- Vol. 118 (4) , 1095-1106
- https://doi.org/10.1242/dev.118.4.1095
Abstract
The transition from multipotent mesodermal precursor to committed myoblast and its differentiation into a mature myocyte involve molecular events that enable the cell to activate muscle-specific genes. Among the participants in this process is the myocyte-specific enhancer factor 2 (MEF2) family of tissue-restricted transcription factors. These factors, which share a highly conserved DNA-binding domain including a MADS box, are essential for the expression of multiple muscle genes with cognate target MEF2 sites in cis. We report here a new human MEF2 factor, hMEF2D, which is unique among the members of this family in that it is present not only in myotubes but also in undifferentiated myoblasts, even before the appearance of myogenin. hMEF2D comprises several alternatively spliced products of a single gene, one of which is the human homolog of the Xenopus SRF-related factor SL-1. Like its relatives, cloned hMEF2D is capable of activating transcription via sequence-specific binding to the MEF2 site, recapitulating endogenous tissue-specific MEF2 activity. Indeed, while MEF2D mRNAs are ubiquitous, the protein is highly restricted to those cell types that contain this activity, implicating posttranscriptional mechanisms in the regulation of MEF2D expression. Alternative splicing may be important in this process: two alternative MEF2D domains, at least one of which is specifically included during myogenic differentiation, also correlate precisely with endogenous MEF2 activity. These findings provide compelling evidence that MEF2D is an integral link in the regulatory network for muscle gene expression. Its presence in undifferentiated myoblasts further suggests that it may be a mediator of commitment in the myogenic lineage.Keywords
This publication has 31 references indexed in Scilit:
- Interplay between proliferation and differentiation within the myogenic lineageDevelopmental Biology, 1992
- Human and Drosophila Homeodomain Proteins That Enhance the DNA-Binding Activity of Serum Response FactorScience, 1992
- Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response elementCell, 1992
- The myoD Gene Family: Nodal Point During Specification of the Muscle Cell LineageScience, 1991
- Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin.The Journal of cell biology, 1990
- Negative control of the helix-loop-helix family of myogenic regulators in the NFB mutantCell, 1990
- Expression of two myogenic regulatory factors myogenin and MyoDl during mouse embryogenesisNature, 1989
- The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domainCell, 1989
- Release of arachidonate from membrane phospholipids in cultured neonatal rat myocardial cells during adenosine triphosphate depletion. Correlation with the progression of cell injury.Journal of Clinical Investigation, 1985
- Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro.The Journal of cell biology, 1982