Immunocytochemical analysis of D‐serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons

Abstract
D-Serine is a co-agonist at the NMDA receptor glycine-binding site. Early studies have emphasized a glial localization for D-serine. However the nature of the glial cells has not been fully resolved, because previous D-serine antibodies needed glutaraldehyde-fixation, precluding co-localization with fixation-sensitive antigens. We have raised a new D-serine antibody optimized for formaldehyde-fixation. Light and electron microscopic observations indicated that D-serine was concentrated into vesicle-like compartments in astrocytes and radial glial cells, rather than being distributed uniformly in the cytoplasm. In aged animals, patches of cortex and hippocampus were devoid of immunolabeling for D-serine, suggesting that impaired glial modulation of forebrain glutamatergic signaling might occur. Dual immunofluorescence labeling for glutamate and D-serine revealed D-serine in a subset of glutamatergic neurons, particularly in brainstem regions and in the olfactory bulbs. Microglia also contain D-serine. We suggest that some D-serine may be derived from the periphery. Collectively, our data suggest that the cellular compartmentation and distribution of D-serine may be more complex and extensive than previously thought and may have significant implications for our understanding of the role of D-serine in disease states including hypoxia and schizophrenia.