Highly Enantioselective Oxidation of cis-Cyclopropylmethanols to Corresponding Aldehydes Catalyzed by Chloroperoxidase

Abstract
Chloroperoxidase (CPO) catalyzes the enantioselective oxidation of cyclopropylmethanols, such as 2-methylcyclopropylmethanol, to cyclopropyl aldehydes using tert-butyl hydroperoxide as the terminal oxidant. In all cases, CPO oxidation of cis-cyclopropanes shows much higher enantioselectivity than with the trans isomers, although CPO gives similar catalytic activity on both isomers. This presents the first example for a heme enzyme that catalyzes the enantioselective oxidation of cyclopropylmethanols. This finding enables a novel route to the synthesis of optically active cyclopropane derivatives, which occur widely in natural products and compounds of pharmaceutical interest. In addition, chiral cyclopropane molecules may be useful model substrates to investigate reaction mechanisms of CPO and the related cytochromes P450.

This publication has 15 references indexed in Scilit: