Cytoplasmic male sterility in rapeseed (Brassica napus L.)

Abstract
Restriction patterns of chloroplast (cp) and mitochondrial (mt) DNA in Brassica napus rapeseed reveal the alloplasmic nature of cytoplasmic male sterility in this crop. Both the Shiga and Bronowski systems probably exploit cytoplasmic diversity in B. napus cultivars arising from introgression of cytoplasm from the other rapeseed species, B. campestris. Nuclear genes specific to these systems do not cause sterility in maintainers (Bronowski and Isuzu-natane) because they have a campestris cytoplasm, but give rise to sterility in napus cytoplasms. In the course of hybridization to napus cultivars a line with the triazine resistant cytoplasm (a campestris cytoplasm) has undergone an alteration in the mt genome rendering its restriction pattern more similar than previously to that of napus. The alteration may be an inversion between 7.2 and 3.4 kb in length.