A robust voice activity detector for wireless communications using soft computing

Abstract
Discontinuous transmission based on speech/pause detection represents a valid solution to improve the spectral efficiency of new generation wireless communication systems. In this context, robust voice activity detection (VAD) algorithms are required, as traditional solutions present a high misclassification rate in the presence of the background noise typical of mobile environments. This paper presents a voice detection algorithm which is robust to noisy environments, thanks to a new methodology adopted for the matching process. More specifically, the VAD proposed is based on a pattern recognition approach in which the matching phase is performed by a set of six fuzzy rules, trained by means of a new hybrid learning tool. A series of objective tests performed on a large speech database, varying the signal-to-noise ratio (SNR), the types of background noise, and the input signal level, showed that, as compared with the VAD standardized by ITU-T in Recommendation G.729 annex B, the fuzzy VAD, on average, achieves an improvement in reduction both of the activity factor of about 25% and of the clipping introduced of about 43%. Informal listening tests also confirm an improvement in the perceived speech quality

This publication has 20 references indexed in Scilit: