Abstract
We investigate the sparticle spectrum in models of gauge-mediated supersymmetry breaking. In these models, supersymmetry is spontaneously broken at an energy scale only a few orders of magnitude above the electroweak scale. The breakdown of supersymmetry is communicated to the standard model particles and their superpartners by "messenger" fields through their ordinary gauge interactions. We study the effects of a messenger sector in which the supersymmetry-violating F-term contributions to messenger scalar masses are comparable to the supersymmetry-preserving ones. We also argue that it is not particularly natural to restrict attention to models in which the messenger fields lie in complete SU(5) GUT multiplets, and we identify a much larger class of viable models. Remarkably, however, we find that the superpartner mass parameters in these models are still subject to many significant contraints.Comment: 24 pages, LaTeX, uses epsf.sty, 4 figures. Assumptions clarified, numerical bounds tweaked, typos correcte