Abstract
The ability of the polymorphonuclear leukocyte (PMN) oxidants, hypochlorous acid (HOC1) and hydrogen peroxide (H2O2), to oxidize proteins in rat heart and lung tissues was investigated. Cardiac myocytes, heart tissue slices, isolated perfused hearts, and lung tissue slices, were treated with HOCI and H2O2 and the extent of methionine and cysteine oxidation was determined in the cellular proteins. Cardiac tissues were found to be highly susceptible to oxidation by physiological concentrations of HOCl. For example, in isolated hearts perfused for 60 min with 100 μM HOCI, approximately 18010 of the methionine and 2801o of the cysteine residues were oxidized. Lung tissues, unlike those of the heart, were resistant to physiological concentrations of HOCI, showing no oxidation of proteins. HOCI was much more effective than H2O2 in oxidizing proteins, suggesting that HOCI may be the most reactive oxidant produced by activated PMN. These studies show that PMN oxidants, in particular HOC I, can cause significant oxidation of proteins in target tissues, and may therefore constitute a primary cause of tissue injury at sites of inflammation. In addition, these studies show that different tissues may have varying susceptibilities to PMN oxidants.