Abstract
Several authors have noted that simple models for the evolution of a reproducing and spatially distributed population have no limiting distribution, although a Poisson process in statistical equilibrium has sometimes been implicitly assumed. It is shown that, even when a mechanism for restricting population density is postulated, a Poisson process is usually impossible to achieve, essentially because of an assumption of independent displacements. When this assumption is abandoned, a Poisson process is possible, at least for some highly idealised models.

This publication has 14 references indexed in Scilit: