Elastin-Derived Peptides Induce a T-Helper Type 1 Polarization of Human Blood Lymphocytes

Abstract
Objective— Increased level of elastin-derived peptides (EDPs) is observed in the serum of patients with manifestations of arterial diseases. We here investigated whether EDPs might exert, at systemic level, a regulatory role for the T-helper type 1 (Th-1)/Th-2 cellular immune response by human peripheral blood lymphocytes (PBLs) expressing the spliced-galactosidase (S-gal)–elastin receptor. Methods and Results— Using flow cytometry and Western blot analysis, we demonstrated that EDPs led to an activation of the S-gal-elastin receptor associated with cytokine production on PBLs and CD4+ T cell subpopulations. The constitutive expression of the S-gal–elastin receptor at the surface of human PBLs was upregulated at the mRNA (RT-PCR) and protein (ELISA) levels on cell activation. In nonactivated and phytohemagglutinin-activated conditions, expressions of the predominant Th-2 cytokine interleukin-5 (IL-5) and IL-10 were reduced, whereas those of the major Th-1 cytokines interferon-γ and IL-2 were enhanced by EDPs. Furthermore, we evidenced that EDPs could not only potentiate the IL-12–induced Th-1 profile but also could reverse the Th-2 (over Th-1) profile induced by IL-4. Finally, Th-1 cytokine upregulation was associated to an increased activator protein-1 DNA binding and enhanced pro–matrix metalloproteinase-9 secretion. Conclusions— This study highlights the importance of EDPs as stimuli for Th-1 differentiation, whether T cells are in an inactivated state or already orientated toward a Th-1 (IL-12) or Th-2 (IL-4) response. Elastin-derived peptides, as generated during arterial diseases such as AAA, were shown to act as potent T-cell stimuli inducing Th-1 polarization and MMP-9 production.