Ultrafast Excited-State Dynamics of Adenine and Monomethylated Adenines in Solution: Implications for the Nonradiative Decay Mechanism
- 10 October 2003
- journal article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 125 (44) , 13594-13601
- https://doi.org/10.1021/ja035628z
Abstract
The DNA base adenine and four monomethylated adenines were studied in solution at room temperature by femtosecond pump-probe spectroscopy. Transient absorption at visible probe wavelengths was used to directly observe relaxation of the lowest excited singlet state (S(1) state) populated by a UV pump pulse. In H(2)O, transient absorption signals from adenine decay biexponentially with lifetimes of 0.18 +/- 0.03 ps and 8.8 +/- 1.2 ps. In contrast, signals from monomethylated adenines decay monoexponentially. The S(1) lifetimes of 1-, 3-, and 9-methyladenine are similar to one another and are all below 300 fs, while 7-methyladenine has a significantly longer lifetime (tau = 4.23 +/- 0.13 ps). On this basis, the biexponential signal of adenine is assigned to an equilibrium mixture of the 7H- and 9H-amino tautomers. Excited-state absorption (ESA) by 9-methyladenine is 50% stronger than by 7-methyladenine. Assuming that ESA by the corresponding tautomers of adenine is unchanged, we estimate the population of 7H-adenine in H(2)O at room temperature to be 22 +/- 4% (estimated standard deviation). To understand how the environment affects nonradiative decay, we performed the first solvent-dependent study of nucleobase dynamics on the ultrafast time scale. In acetonitrile, both lowest energy tautomers of adenine are present in roughly similar proportions as in water. The lifetimes of the 9-substituted adenines depend somewhat more sensitively on the solvent than those of the 7-substituted adenines. Transient signals for adenine in H(2)O and D(2)O are identical. These solvent effects strongly suggest that excited-state tautomerization is not an important nonradiative decay pathway. Instead, the data are most consistent with electronic energy relaxation due to state crossings between the optically prepared (1)pipi* state and one or more (1)npi* states and the electronic ground state. The pattern of lifetimes measured for the monomethylated adenines suggests a special role for the (1)npi* state associated with the N7 electron lone pair.Keywords
This publication has 49 references indexed in Scilit:
- Singlet Excited-state Lifetimes of Cytosine Derivatives Measured by Femtosecond Transient Absorption¶Photochemistry and Photobiology, 2003
- Interaction of Water Molecules with Cytosine Tautomers: An Excited-State Quantum Chemical InvestigationThe Journal of Physical Chemistry A, 2002
- Tautomer contributions to the near UV spectrum of guanine: towards a refined picture for the spectroscopy of purine moleculesThe European Physical Journal D, 2002
- Phototautomerism in Uracil: A Quantum Chemical InvestigationThe Journal of Physical Chemistry A, 2002
- Assignment of Electronic Transition Moment Directions of Adenine from Linear Dichroism MeasurementsJournal of the American Chemical Society, 1997
- Photophysical properties of biologically important molecules related to proximity effects: psoralensJournal of the American Chemical Society, 1982
- Tautomerism of purines. 2. Amino-imino tautomerism in 1-alkyladeninesJournal of the American Chemical Society, 1977
- A refinement of the crystal structure of 9-methyladenineActa Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 1977
- Tautomerism of purines. I. N(7)H .dha. N(9)H equilibrium in adenineJournal of the American Chemical Society, 1975
- An experimental investigation of the tautomers of adenineJournal of the Chemical Society B: Physical Organic, 1970