Role of genomic architecture in PLP1 duplication causing Pelizaeus-Merzbacher disease
Open Access
- 14 June 2006
- journal article
- research article
- Published by Oxford University Press (OUP) in Human Molecular Genetics
- Vol. 15 (14) , 2250-2265
- https://doi.org/10.1093/hmg/ddl150
Abstract
Genomic architecture, higher order structural features of the human genome, can provide molecular substrates for recurrent sub-microscopic chromosomal rearrangements, or may result in genomic instability by forming structures susceptible to DNA double-strand breaks. Pelizaeus-Merzbacher disease (PMD) is a genomic disorder most commonly arising from genomic duplications of the dosage-sensitive proteolipid protein gene ( PLP1 ). Unlike many other genomic disorders that result from non-allelic homologous recombination utilizing flanking low-copy repeats (LCRs) as substrates, generating a common and recurrent rearrangement, the breakpoints of PLP1 duplications have been reported not to cluster, yielding duplicated genomic segments of varying lengths. This suggests a distinct molecular mechanism underlying PLP1 duplication events. To determine whether structural features of the genome also facilitate PLP1 duplication events, we analyzed extensively the genomic architecture of the PLP1 region and defined several novel LCRs (LCR–PMDs). Array comparative genomic hybridization showed that PLP1 duplication sizes differed, but revealed a subgroup of patients with apparently similar PLP1 duplication breakpoints. Pulsed-field gel electrophoresis analysis using probes adjacent to the LCR–PMDs detected unique recombination-specific junction fragments in 12 patients, enabled us to associate the LCR–PMDs with breakpoint regions, and revealed rearrangements inconsistent with simple tandem duplications in four patients. Two-color fluorescence in situ hybridization was consistent with directly oriented duplications. Our study provides evidence that PLP1 duplication events may be stimulated by LCRs, possibly non-homologous pairs at both the proximal and distal breakpoints in some cases, and further supports an alternative role of genomic architecture in rearrangements responsible for genomic disorders.Keywords
This publication has 45 references indexed in Scilit:
- PLP1 and GPM6B intragenic copy number analysis by MAPH in 262 patients with hypomyelinating leukodystrophies: identification of one partial triplication and two partial deletions of PLP1neurogenetics, 2006
- Genomic Disorders: Molecular Mechanisms for Rearrangements and Conveyed PhenotypesPLoS Genetics, 2005
- Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effectAnnals of Neurology, 2005
- The UCSC Genome Browser DatabaseNucleic Acids Research, 2003
- Genomic Rearrangements Resulting in PLP1 Deletion Occur by Nonhomologous End Joining and Cause Different Dysmyelinating Phenotypes in Males and FemalesAmerican Journal of Human Genetics, 2002
- The Human Genome Browser at UCSCGenome Research, 2002
- BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequencesFEMS Microbiology Letters, 1999
- The human COX10 gene is disrupted during homologous recombination between the 24 kb proximal and distal CMT1A-REPsHuman Molecular Genetics, 1997
- Natural history of Williams syndrome: Physical characteristicsThe Journal of Pediatrics, 1988
- Assignment of the Gene for Myelin Proteolipid Protein to the X Chromosome: Implications for X-Linked Myelin DisordersScience, 1985